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Overview

• When is learning worth the trouble?  

• Adapting in a fully observable world

• Adapting in a partially observable world

• Application to habitat management



When Is Learning Worth The Trouble?
• Adaptive Management

– different things to different people
– new information or situation
– stochastic dynamic optimization: 

• action* = f(situation, information)
• trade-offs between present and future

• Learning vs doing: 
– Is it worth acting suboptimally now to be able, 

by virtue of better info, to do better later?  
– In general, what’s the best mix of learning and 

doing?



When Is Learning Worth The Trouble?



When Is Learning Worth The Trouble?

• Optimal control, Markov decision processes 
– no learning or passive learning

• Dual control
– control engineers and a few ecologists
– ‘active adaptive mgt’

• Partially observable Markov decision processes
– AI and robotics
– similar spirit to dual control, but different math



⎥⎦
⎤

⎢⎣
⎡ += ∑

∈ j
j

a
j

a
iji

a
i

Aa
it xqpxqx )()(maxarg)(* βδ

Markov Decision Processes (MDPs):
Adapting in an Observable World 

•Dynamic + Stochastic: future = f(present, error)

•Solution: 

•Process uncertainty, but not observational or 
model uncertainty

•Nothing about gathering info on state variables*



MDPs: adapting in an observable world





Partially Observable MDPs (POMDPs): 
Adapting in a Noisy World

• Stochastic + dynamic + noisy

• Belief becomes a state variable
– beliefs from priors and observations
– uncountably infinite

• MDP: state action
POMDP: belief action
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POMDP Example

When is erosion monitoring worth the expense?



Problem Setup

• When is erosion monitoring worth the trouble?

• States = {Good Road, Bad Road}

• Decisions = {Do Nothing, Monitor, Treat}

• Observations = {Good Road, Bad Road}



Problem Setup
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Results for a 10-period problem
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Results (cont)
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POMDP Assessment
• POMDP may be a good tool for fisheries mgt

– partial observability is central in fisheries
– monitoring funds are scarce
– applicable to planning and behavioral models

• Drawbacks
– computation
– assumes (stochastic) dynamics are known

• Need to
– increase state and decision space heuristics
– try state augmentation for parameter uncertainty



Odds & Ends

• POMDP and state augmentation (Fernandez-Rao)
• Reinforcement Learning (Bertsekas)
• Sequential hypothesis testing (Wald)
• [Behavioral & cognitive modeling: 

– neural basis of learning (Ishii et al.)
– behavioral psychology (Bearden)  
– location choice (Lane)       ]



Movie and Aside on Buckets



• MDP = {S, P, A, W} 
POMDP = {S, P, Θ, R, A, W}

• MDP maps state action  
POMDP maps beliefs action

• Unknown state variables, 
known parameters*

POMDPs: Adapting in a Noisy World



POMDP Value Function
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POMDP Value Function
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POMDP Value Function
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pi*=0.74

Here, 'treat' is the optimal action

Here, 'maintain' is the optimal action 
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